https://www.selleckchem.com/pr....oducts/ly-3475070.ht
Manual segmentation is the gold standard method for radiation therapy planning; however, it is time-consuming and prone to inter- and intra-observer variation, giving rise to interests in auto-segmentation methods. We evaluated the feasibility of deep learning-based auto-segmentation (DLBAS) in comparison to commercially available atlas-based segmentation solutions (ABAS) for breast cancer radiation therapy. This study used contrast-enhanced planning computed tomography scans from 62 patients with breast cancer who underwent breast-c