https://www.selleckchem.com/products/mm-102.html
(1) Determine the feasibility of obtaining a global, unbiased metabolomic profile on laryngeal muscle in a rat model; (2) evaluate the impact of biological aging on the laryngeal metabolome; and (3) characterize biochemical expression differences between aged and non-aged laryngeal and hindlimb muscle. Thyroarytenoid laryngeal muscle and plantaris hindlimb muscle were harvested from 5 young adult (9 months old) and 5 older adult (32 months old) F344BN rats. Tissue was processed and analyzed using LC-MS methods. Detected metabolites were