https://www.selleckchem.com/products/blu-945.html
In particular, introduction of phosphorus, benzene and s-triazine groups led to band gaps smaller than in the standard g-C3N4 (down to 2.4 eV, corresponding to green light). Doping with boron in the linker positions dramatically reduced the band gap (to 1.6 eV, corresponding to red light); the doped material has the valence band position suitable for water oxidation. Our computational study shows that chemical modification of g-C3N4 is a powerful method to tune this material's electronic properties and improve its photocatalytic activit