https://www.selleckchem.com/pr....oducts/debio-0123.ht
Due to the excellent hydrogen affinity and high conductivity, palladium nanoparticles (Pd NPs) were considered as a potential strategy to regulate bacterial electron transfer and energy metabolism. Herein, Citrobacter freundii JH, capable of in-situ biosynthesizing Pd( NPs, was employed to promote Pt(IV) reduction. The results showed that the Pt(IV) reduction to Pt(II) was accomplished mainly via the flavins-mediated extracellular electron transfer (EET) process, while Pt(II) reduction to Pt( was limit step, and proceeded via two